The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm
نویسندگان
چکیده
Descriptions are provided of the aerosol classification algorithms and the extinction-to-backscatter ratio (lidar ratio) selection schemes for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products. One year of CALIPSO level 2 version 2 data are analyzed to assess the veracity of the CALIPSO aerosol-type identification algorithm and generate vertically resolved distributions of aerosol types and their respective optical characteristics. To assess the robustness of the algorithm, the interannual variability is analyzed by using a fixed season (June–August) and aerosol type (polluted dust) over two consecutive years (2006 and 2007). The CALIPSO models define six aerosol types: clean continental, clean marine, dust, polluted continental, polluted dust, and smoke, with 532-nm (1064 nm) extinction-to-backscatter ratios Sa of 35 (30), 20 (45), 40 (55), 70 (30), 65 (30), and 70 (40) sr, respectively. This paper presents the global distributions of the CALIPSO aerosol types, the complementary distributions of integrated attenuated backscatter, and the volume depolarization ratio for each type. The aerosol-type distributions are further partitioned according to surface type (land/ocean) and detection resolution (5, 20, and 80 km) for optical and spatial context, because the optically thick layers are found most often at the smallest spatial resolution. Except for clean marine and polluted continental, all the aerosol types are found preferentially at the 80-km resolution. Nearly 80% of the smoke cases and 60% of the polluted dust cases are found over water, whereas dust and polluted continental cases are found over both land and water at comparable frequencies. Because the CALIPSO observables do not sufficiently constrain the determination of the aerosol, the surface type is used to augment the selection criteria. Distributions of the total attenuated color ratios show that the use of surface type in the typing algorithm does not result in abrupt and artificial changes in aerosol type or extinction.
منابع مشابه
Selection algorithm for the CALIPSO lidar aerosol extinction-to- backscatter ratio
The extinction-to-backscatter ratio (Sa) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. Sa for the CALIPSO lidar will either be selected from a look-up...
متن کاملComparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (hsrl) Measurements and the Calipso Vertical Feature Mask
The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 18 field missions across North America since 2006. The lidar measurements include scale-invariant aerosol parameters that vary with aerosol typ...
متن کاملFully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products
The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite will be launched in April of 2005, and will make continuous measurements of the Earth's atmosphere for the following three years. Retrieving the spatial and optical properties of clouds and aerosols from the CALIPSO lidar backscatter data will be confronted by a number of difficulties that are not faced i...
متن کاملImprovement of Aerosol Retrieval through Cloud Identification
The stable aerosol retrieval algorithm needs a prior assumption of lidar ratio (the extinction-to-backscatter ratio), and the known aerosol type that is the prerequisite of the assumption, so how to identify the clouds from lidar profile is fundamental to acquire atmospheric optical parameter. CALIPSO is a space-borne lidar and it can observe the aerosol characteristic, but can not penetrate th...
متن کاملAerosol models for the CALIPSO lidar inversion algorithms
We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET ) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 10 records of radiance m...
متن کامل